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Abstract
Recently, time-dependent current-density-functional theory has been extended to include the
dynamical interaction of quantum systems with external environments (Di Ventra and D’Agosta
2007 Phys. Rev. Lett. 98 226403). Here we show that such a theory allows us to study a
fundamentally important class of phenomena previously inaccessible by standard
density-functional methods: the decay of excited systems. As an example we study the decay of
an ensemble of excited He atoms, and discuss these results in the context of quantum
measurement theory.

(Some figures in this article are in colour only in the electronic version)

Density-functional theory (DFT), in both its ground-state
and time-dependent versions [1–5] has become the method
of choice to study several equilibrium and non-equilibrium
properties of interacting many-particle systems evolving under
Hamiltonian dynamics.

There is, however, a large class of physical problems
where the dynamical interaction of a quantum system with
an external environment needs to be taken into account. To
this class of open quantum systems belongs also one of the
most basic tenets of quantum theory, namely the non-unitary
evolution of a quantum state due to the measurement by an
apparatus. Non-unitary quantum evolution also pertains to
processes where the energy of the quantum system relaxes
into the degrees of freedom of a bath, like, e.g., the decay
of excited systems. An understanding of such processes from
a microscopic point of view would represent a substantial
advancement in the study of open quantum systems.

To address the above issues, Di Ventra and D’Agosta
have recently proved [6] that given an initial quantum state,
and an operator V̂ that describes the interaction of a many-
body system with a bath, two external vector potentials A(r, t)
and A′(r, t) that produce the same ensemble-averaged current
density, j(r, t), must necessarily coincide, up to a gauge
transformation. The above theorem thus extends the previous
theorems of dynamical DFT (that are one of its corollaries
if V̂ = 0), and allows for the first-principles description of

the dynamics of open quantum systems via effective single-
particle equations. This theory has been named stochastic
time-dependent current-DFT (stochastic TD-CDFT) [6, 7].

Here we apply the above theory to a previously
inaccessible problem via standard DFT methods: the decay of
an ensemble of excited He atoms. In addition, we interpret
the results in the context of quantum measurement theory
by showing that the interaction with the environment can be
viewed as a continuous ‘measurement’ of the state of the
system, thus making a connection between density-functional
theory and quantum measurement theory.

We consider two cases: (1) an ensemble of excited He+
atoms, whose dynamics can be directly compared with the one
obtained from a density-matrix approach, and thus serves as an
important numerical test of our procedure. (2) An ensemble
of neutral excited He atoms. Our results reveal unexpected
features of this problem, like the dampening and modification
of high-frequency oscillations during energy relaxation of the
ensemble towards its ground state.

The starting point of stochastic TD-CDFT is the stochastic
equation of motion of an auxiliary Kohn–Sham (KS) Slater
determinant �KS built out of single-particle KS states φα

(h̄ = 1)

∂t�
KS(t) = −i

∑

i

Ĥ KS
i (t)�KS(t) − τ

2
V̂ †V̂ �KS(t)

+ �(t)V̂ �KS(t), (1)
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where

Ĥ KS
i (t) =

[
p̂i + A(r̂i , t)/c + Axc(r̂i , t)/c

]2

2
+ Vext(r̂i ) + V̂H(r̂i , t), (2)

with A(r̂i , t), an arbitrary external vector potential, Axc[j(r, t ′),
|�0〉, V̂ ] the exchange–correlation vector potential (which is
a functional of the average current density j, for t ′ � t , the
initial condition |�0〉, and the operator V̂ ), Vext(r̂i ) an ex-
ternal scalar potential (e.g., the electron–ion potential), and
V̂H(r̂i , t) the Hartree potential. The quantity τ has dimensions
of time. Without loss of generality the stochastic process, �(t),
is chosen such that it has both zero ensemble average and δ-
autocorrelation, i.e.1,

�(t) = 0; �(t)�(t ′) = τδ(t − t ′), (3)

where the symbol · · · indicates the average over a statistical
ensemble of identical systems all prepared in the same initial
quantum state |�0〉. For the particular choice of bath operator
we will make in this paper (equation (5)), which acts on single-
particle states only, the stochastic equation (1) is simply

∂tφα(t) = −iĤKSφα(t) − τ

2
V̂ †V̂ φα(t) + �(t)V̂ φα(t), (4)

where α contains also the spin degrees of freedom [8].
The use of a stochastic Schrödinger equation in the context

of DFT, and not of an equation of motion for the density
matrix, is because in DFT the KS Hamiltonians depend on the
density (and/or the current density), and therefore they are, in
general, different for the different elements of the ensemble
(i.e., they are stochastic Hamiltonians). This does not generally
guarantee a closed equation of motion for the KS density
matrix of a mixed state [6].

As mentioned previously, our aim is to describe the decay
of excited electrons bound to a He nucleus. The electrons
are prepared in some initial excited state, and evolve into the
ground state as a result of the stochastic interaction with an
environment, that, quite generally, can be thought of as a boson
field with dense spectrum. The precise form of the operator V̂
which causes this behavior would, in general, depend on the
detailed model of the bath. The operator V̂ also determines the
rate at which the system relaxes towards equilibrium.

Here we choose the simplest possible operator, whose
matrix elements are2

〈εi |V̂ |ε j 〉 =
{

1/
√

τ td if i = 0, and 0 < j < M

0 otherwise,
(5)

where |εi 〉 is an eigenstate of the ground-state KS Hamiltonian
in the absence of the interaction with the bath, εi is the

1 In the calculations of this paper, we use small but finite time steps of duration

t . The mean and autocorrelation of �(t) are thus given by �(ti ) = 0 and
�(ti )�(t j ) = δi, j τ/
t , respectively, where ti and t j are arbitrary times, and
δi, j is the Kronecker delta. We have chosen the probability distribution P(�)

of �(t) to be Gaussian, so that P(�) = √

t/2πτexp(−�2
t/2τ ).

2 In our numerical work we have used a position basis so that the action of
this operator in this basis is 〈r|V φ(t)〉 = ∑

i 〈r|εi 〉 ∑
j 〈εi |V |ε j 〉〈ε j |φ(t)〉 =

〈r|E0〉 1√
τ td

∑ j<M
j=1 〈ε j |φ(t)〉.

corresponding eigenvalue, and the upper limit M is a given
integer representing the number of states we keep in the
simulation. (In the present case we have kept M = 15 states.)
The parameter td gives the timescale over which the decay will
occur, with larger values of td leading to longer decay times. In
the following we have taken td = 1 fs, which is an arbitrary
time constant chosen only to illustrate the method with no
reference to any particular experiment. The operator V̂ defined
this way ensures that the stochastic Schrödinger equation (4) is
independent of the magnitude of τ .

Clearly, the above operator reduces the projection of
a wavefunction from the states {|ε1〉, |ε2〉 . . . |εM−1〉}, and
increases the projection onto the ground state |ε0〉. Physically,
it describes energy relaxation and dephasing.

The linear stochastic Schrödinger equation (4) preserves
the ensemble-averaged wavefunction normalization [6]. How-
ever, the normalization is not necessarily satisfied for any par-
ticular realization of �(t). In order to reduce the number of
dynamical calculations to perform the ensemble average, we
have explicitly re-normalized |φ〉 at every time step. This cor-
responds to the solution of a nonlinear stochastic Schrödinger
equation which is equivalent to equation (4). (For a discussion
of a similar nonlinear stochastic Shrödinger equation, see [9].)
This imposition of normalization is motivated by the intended
application of this formalism toward a density-functional cal-
culation, for which repeated calculations are computationally
expensive, especially when the number of electrons is large.

We begin by considering the behavior of an ensemble of
He+ ions interacting with the environment represented by the
operator (5). For this one-electron case DFT is not required.
Nonetheless, it serves as a important numerical test. We
prepare the system with all ions in the ensemble in the 2s
state, denoted by |ε1〉, and then let the electrons evolve in time
according to equation (4)3. Panel (a) of figure 1 gives the
projections Pi (t) = |〈εi |φ(t)〉|2, as a function of time for one
particular realization of �(t). We see that the projection P0(t)
onto the ground state approaches one as time evolves, while the
projections onto other states approach zero, indicating energy
relaxation into the ground state. In order to demonstrate that
this behavior is not due to the particular choice of seed in our
random number generator, we also plot the projections Pi (t)
averaged over 5 different simulations with different seeds. One
can clearly see that the fluctuations in panel (b) of figure 1 are
reduced in comparison to the fluctuations in panel (a).

For the single-electron case of He+, we can analytically
treat the ensemble average over all realizations of �(t) by
considering the density matrix ρ̂ of this mixed state. In this
case, using equations (4) and (3), it can be shown [15, 6] that
the stochastic Schrödinger equation (4) is the unraveling of the
following quantum master equation

dρ̂

dt
= −i[HKS, ρ̂] + τV ρ̂V † − τ

2
ρ̂V †V − τ

2
V †V ρ̂. (6)

3 We represent the He nucleus with a simple 2/r potential. We integrate
out the singularity at the origin using a method similar to the Ewald
method [10, 11]. We use the Hockney method to calculate the potential of
an isolated system [12]. The supercell is a cube of length 16.93 Å, and the
grid spacing is 0.239 Å. We use the Chebyshev method of constructing the
propagator [13, 14], and we use a time step of 0.02 fs.
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Figure 1. Panel (a): stochastic evolution of the projections Pi onto
the unperturbed states εi , for He+, as a function of time. The black
(solid), red (dashed), and blue (dotted) curves correspond to P0, P1,
and P2, respectively. Note that the projections P3 and P4 coincide
with P2, since all three states have p symmetry. All other projections
are vanishingly small. Panel (b): same as for panel (a), but averaged
over five different runs, each with a different seed for the random
number generator. Panel (c): same as for panels (a) and (b), except
that the dynamics were calculated using the Lindblad master
equation (6).

In panel (c) of figure 1 we plot the matrix elements
〈εi |ρ̂|εi 〉 which show the same behavior obtained with
equation (4), giving us confidence on the numerics of our
procedure.

We can now move on to discuss the decay of neutral
He using stochastic TD-CDFT, and for which a closed form
of the KS single-particle quantum master equation cannot be
obtained [6]. We prepare the system in such a way that both
electrons (with spin σ ) are in the first excited state of the
ground-state Hamiltonian, |φσ (t = 0)〉 = |ε1〉. This means
that the Pauli exclusion principle is automatically satisfied by
our environment operator (5). For this case we compare the
stochastic evolution with the one in which V̂ = 0.4

In stochastic TD-CDFT both the ensemble-averaged
density and current density are exact if we knew the exact
functional. Approach to equilibrium could be thus monitored
by discussing these two quantities. However, like in any other
application of DFT, we take a step further and separate the
density contributions into the different Kohn–Sham states. A
direct physical meaning of these auxiliary states cannot be
given, but they provide a convenient and intuitive way to
interpret the results in terms of single-particle orbitals.

4 We use the local density approximation to the scalar exchange–correlation
potential [2, 3], as derived by Ceperley and Alder [16] and parametrized by
Perdew and Zunger [17]. The exchange–correlation vector potential is the one
reported in [18], and we have used the interpolation formula in [19] for the
electron viscosity.

Figure 2. Panel (a): projections Pi = |〈εi |φ〉|2 for neutral He, as a
function of time, for the case where the stochastic terms are not
included (unitary evolution). The black, red (light gray), and blue
(dark gray) curves correspond to P0, P1, and P8, respectively.
Panel (b): same for as panel (a), but with the inclusion of the
interaction with the environment. Panel (c): same for as panel (b),
but averaged over five different runs, each with a different seed for
the random number generator. Panel (d): same as for panels (a)–(c),
except the dynamics were calculated using the wavepacket collapse
methodology of equation (7).

In figure (2), we plot the projections Pi = |〈εi |φ〉|2 for
the unitary evolution (panel (a)), as well as the projections for
the non-unitary evolution for one realization of �(t) (panel (b))
and averaged over five different realizations of �(t) (panel (c)).
As expected, in the presence of the environment, the projection
onto the ground state |ε0〉 approaches 1, while the occupations
of other states are suppressed as time goes on. Here, however,
we also note another effect of the interaction. Figure 2(a)
illustrates that, in the unitary evolution the projections Pi

oscillate in time, which implies oscillations of the density,
and are thus physically relevant. This oscillatory behavior
reflects the motion of the electrons as they alternately fall
toward the nucleus, and then rebound outward5. Interaction
with the environment has the effect of not only dampening
these oscillations6 but also of modifying their frequency, the

5 Sugino et al report similar high-frequency oscillations while studying the
dipole moment of an isolated aluminum dimer [20].
6 Since we are using an approximate exchange–correlation vector potential
with an effective viscosity, the internal electron friction also contributes to the
dampening of these oscillations.
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details of which vary depending on the particular realization
of �(t). The physical reason for this is that the introduction of
the bath mediates new intermediate transitions for the single-
particle wavefunction |φ〉, thus effectively reducing the overall
frequency of the oscillations.

We now discuss these results in terms of measurement
theory. It is well-known that it is possible to interpret
the interaction with an environment as a continuous
‘measurement’ of the state of the system—or, equivalently,
of the state of the environment—with consequent non-unitary
wavepacket reduction [21, 22]. We can make this point
even clearer by assuming that every time the system interacts
with the environment it emits a boson excitation (whether a
photon or a phonon) and thus there is a finite probability
dp = dt|〈ε1|φ〉|2/td that the emitted excitation be detected
by an apparatus [23]. Upon detection of this excitation, the
wavefunction |φ〉 collapses to the ground state |ε0〉. This is the
well-known postulate of wavepacket reduction.

We can write the above in the form of a Schrödinger-
type equation of motion that includes a stochastic variable
γ (t), which has a probability distribution uniformly distributed
between 0 and 1. If γ > dp, an emitted excitation is not
detected, while if γ < dp, the emitted excitation is detected,
and the wavefunction collapses to the ground state. That is,
during a small time 
t , |φ〉 evolves according to

|φ(t + 
t)〉 = μe−iH
tθ(γ (t) − dp)|φ(t)〉
+ θ(dp − γ (t))|ε0〉, (7)

where θ(x) is the Heaviside step function, H = HKS −
iV †V/2τ , and μ is the normalization factor7. A similar
approach has been used by Dalibard et al in the context
of quantum optics [23]. In the present problem, the term
iV †V/2τ does not contribute much to the dynamics, but it is
generally important since it represents a ‘null-measurement’
result in which no excitation has been emitted.

In figure 2(d) we plot the results from the time evolution
of equation (7) for the problem of He relaxation. Starting
with |φ(t = 0)〉 = |ε1〉, we evolved equation (7) in
time for 1000 different realizations of γ (t), and found the
average value of |〈εi |φ(t)〉|2, which we have denoted by
Pi . Note that each individual wavefunction starts in the
excited state, and then suddenly drops to the ground state
the first time that γ (t) < dp. This wavepacket reduction
occurs at a different time for each run, and the ‘remaining’
excited states become exponentially less likely as time goes
on; therefore, the average curve approaches an exponential.
By comparing figure 2(d) with 2(c) we see that the non-
unitary wavepacket reduction evolution is qualitatively similar
to that provided by the stochastic Schrödinger equation (4).
This equivalence therefore illustrates a point of contact
between the stochastic Schrödinger equation (4) and quantum
measurement theory: the environment ‘measures’ the state of
the system, and, as a result, the wavefunction is modified
in a non-unitary way. We observe, however, an important
difference. In the wavepacket reduction formalism described

7 It can be shown [23] that by defining an operator Ŝ such that Ŝ|ε1〉 =
|ε0〉, the density matrix ρ̂ associated with equation (7) satisfies the Lindblad
equation (6) with Ŝ replacing V̂ .

by equation (7), after the apparatus ‘detects’ the excitation,
the system immediately collapses onto the ground state |ε0〉,
irrespective of the interactions of the other states with the
environment. In contrast, the non-unitary evolution of the
stochastic Schrödinger equation (6) involves a constant process
of self-consistent interaction with the bath. This implies
that the frequency of small oscillations is unchanged in
the wavepacket reduction formalism, while they change in
time during dynamical interaction with the environment as
described by equation (6). Clearly, one could introduce
this effect into equation (7), but at a non-trivial complexity
cost, while the stochastic Schrödinger equation (6) contains it
naturally.

In summary, we have used stochastic TD-CDFT to
describe the interaction of an excited quantum system (He)
with an external environment, and its consequent decay into the
ground state; a problem previously inaccessible via standard
DFT methods. We have made a connection of this open
quantum problem with quantum measurement theory thus
showing that stochastic TD-CDFT may find applications in
quantum information theory of realistic systems.
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